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 Power delivery architecture can be quite complex in multi/many core systems 

– Many rails 

– High current / wide voltage requirements 
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 Basic rule: optimize each section 
– ‘turn off’ unused features 

– Optimize voltage supply 

 Clock gating and power gating 
– Use flops only when data is changing (spatially and temporal fine-grained) 

– Turn off the complete clock tree inside an IP (spatially and temporally mid-grained) 

– Idle IP: gate the supply (spatially and temporally coarse-grained) 

 

 

 

 

 

 

 

 

 

 Core power savings through P-state adjustments 
– A core operates at an optimal v-f pair 

– Frequency is defined by required performance 

(voltage is adjusted later) 
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POWER SAVING LIMITATIONS IN SERVER AND HPC 

SYSTEMS 

 High Performance Computing is carried out using massive number of 

processors running in parallel 

– Cray XT5 in ORNL: 224.256 AMD Opteron processors (18688 CU, each is a dual 

hex-core) 

 

 

 

 Very intensive resource utilization: always doing something! 

– Multi-threading is extensively used to maximize throughput  

 Coarse techniques do not work well 

– Coarse clock gating or power gating are not effective, as most  

of the time everything is working at near-full capacity 

– Power gating can even be disabled 

 Fine clock-gating is still useful 
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 Traditional VRM structure in multicore chips: multiphase buck converter 

–  12V input, 0.6-1.5V output 
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 IVR in multicore chips (assuming just a single input rail) 
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 Move VRM from the board to the chip (IVR) 

 General benefits enabled by IVR 

– Improved transient response (lower voltage droops), eliminate interconnection 

parasitics  

– P-state optimization: critical for multi/many core systems 

– Cost benefit: eliminate significant PCB real state and BOM 

– Reduction of package power distribution unbalances and hot-spots 

 

 

 

 

 

 

 

– Mitigation of die to die and core to core variations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THE IVR CONCEPT 

More subtle problem 

 complex package power 

distribution in multicore dies 

can cause die supply 

unbalances 

These 2 cores 

can have worse 

droops than the 

other 2 cores 

Sample wafer scale Vth variation 

Die to die variations: causes deviations in product performance 

Core to core variations: voltage is set by the slowest core to hit 

performance target → the other cores run at higher voltage than 

necessary* 

*package unbalances add a systematic error to the random variations  
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THE IVR CONCEPT 

 But IVR does not come for free: there are trade-offs that have to be carefully 

considered 

– Increased silicon area: higher cost (especially in deep submicron technologies) 

– Increased complexity: on-die inductors? package inductors? control loop? 

efficiency optimization? 

– Increased package complexity 

– Switching noise/EMI impact 

– Thermal impact 

 Furthermore, performance benefits heavily depend on use cases 

– Typical P-state usage 

– Thermally-limited scenarios 
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 More insight: performance benefit from per-core voltage regulation 

– what if each core could operate at its optimum (f,V) 

 

 

 

 

 

 

P-STATE OPTIMIZATION  

Core0 Core2

Core1 Core3

NorthBridge + L3

D
D

R
3

 P
h
y

H
y
p
e
rT

ra
n
s
p
o
rt

P
h
y
s

MiscIO

MiscIO

v f0 f2 

f1 f3 

Core0 Core2

Core1 Core3

NorthBridge + L3

D
D

R
3

 P
h
y

H
y
p
e
rT

ra
n
s
p
o
rt

P
h
y
s

MiscIO

MiscIO

v0 f0 v2 f2 

v3 f3 v1 f1 

quadratic 

gain 

linear*exp 

gain 

Note that IVR efficiency is not 

accounted for here 



11 POWERSOC 2014   |   OCT 6, 2014  

 More insight: performance benefit from per-core voltage regulation 

– what if each core could operate at its optimum (f,V) 
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 More insight: performance benefit from per-core voltage regulation 

– now consider VRM and IVR efficiencies 

 

 

 

 

 

P-STATE OPTIMIZATION 
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 Performance gains offered by IVR depend on workload 

– In server and HPC systems, high-performance P-states are used the vast majority 

of the time 

– This leads to a significant reduction of achievable power gains 

 

  

PERFORMANCE LIMITATIONS 

Statistical analysis of power reduction* 

*high leakage technology, 16 cores, 8 Pstates, uniform distribution 

over indicated voltage range, 100C 

vP7 = 1.0V 

vP0 = 1.2V 
vP7 = 0.75V 

vP0 = 1.2V 

vP7 = 1.1V 

vP0 = 1.2V 
 Less than <15% power reduction 

Somewhat optimistic conditions 

(IVR efficiency 90%) 

 Increase in area and complexity 

(inductors, control) might not be 

worth anymore 

MIGHT DISCOURAGE IVR 

SOLUTION IN THESE SYSTEMS 
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THERMAL LIMITATIONS 

 Server and HPC system are typically thermally limited 

– This further impacts performance gains: when all cores are running at the same P-

state, losses have shifted from VRM to the die 

44 mm 

200 mm 37 mm 

Fan at inlet 

G34 processor 
package 

High-fin density 
heatsink 

VRM region 
Exhaust 

WORST-CASE ANALYSIS 
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 Scenario 1: traditional VRM design 

– Per package TDP: 165W 

– VR Power loss: 24W (~87% efficiency)  

– Fan Speed: 30 CFM 

 Scenario 2: VRM+IVR 

– Per package TDP: 165W 

– IVR Power loss: 24W (~87% efficiency)  

– Fan Speed: 30 CFM 

– All cores running at full speed (max P-state) 

– Extra heat uniformly distributed 

 Scenario 3: IVR only (as a guideline) 

– Per package TDP: 165W 

– VR Power loss: 24W (~87% efficiency)  

– Fan Speed: 30 CFM 

– All cores running at full speed (max P-state) 

– Extra heat uniformly distributed 

– No VRM required 

 

THERMAL LIMITATIONS 
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THERMAL LIMITATIONS 

 Assuming equivalent junction and package temperatures 

– Adding IVR results in ~24W core power (non-IVR) deficit (at worst-case operating 

point) 

– Impact of 24W power deficit on performance is -10.9% assuming leakage 

constitutes 25% of the total core power 

 

 

 

 

 

 

 

 

 

 

 This could also be addressed with a different thermal solution 

– Heat sink design, package heat transfer, increase fan speed 

– Modify die floorplan 

 

Scenario 
Fan flow 

rate (CFM) 
Tamb 

Heatsink 

Rca (C/W) 
Heatsink Rja 

(C/W) 
Tc Tj Tpcb Tj delta 

Power 

compensation 
Performance 

deficit 

1- No IVR 
(165W) 30 42 0.172 0.23 70.4 80.5 99.4 

2- With IVR 
(190W) 30 42 0.166 0.22 73.4 84.9 86.9 4.3 -24W -10.9% 

3- With IVR 
(190W) 30 42 0.166 0.22 73.4 84.9 57.5 4.3 -24W -10.9% 

Max. core power needs to be brought down 24W to reach same Tjmax → ~11% performance hit 

All these have a 

significant system-

level/cost impact 
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PERFORMANCE BENEFIT OF LINEAR IVR 

 We have seen that switching IVRs can add substantial power dissipation to the die, as 

well as significant complexity 

 If the cores are going to operate most of the time in a narrower voltage range, why not 

use low dropout regulators (LDOs)?  

– In power electronics, this is counterintuitive due to low linear efficiency 

– However, power gain can still be achieved 

> quadratic 

gain 
exponential * linear gain 

> linear 

gain 
exponential gain 

1.1V to 1V → ηLDO=91% 
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USING LDO AS IVR IN SERVER AND HPC 

 LDO vs switching IVR 

Switching IVR LDO 

Complexity High Low-medium 

Chip area Increase No impact 

Efficiency High Medium-high (Vin/V 

> 0.9) 

Thermal impact Medium-high Small or no impact 

Custom design 

required 

High Low-medium 
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 IVR in multicore chips (assuming just a single input rail) 
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 IVR in multicore chips (assuming just a single input rail) 
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 Distributed: 
– [ISSCC14, “Distributed System of Digitally Controlled Microregulators Enabling Per-Core DVFS 

for the Power8 Microprocessor] 

 

 

 

 

 

 Traditional 
– [Fully-integrated LDO voltage regulator for digital circuits]  

M. Luders et al, Adv. Radio Sci., 9, 263–267, 2011 

LDO IVR ARCHITECTURES 
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Error to 
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slow 
fast 

Used to supply a low power micro-

controller core 

• Traditional analog approach 

• Any-load stable 
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CONCLUSIONS 

 Power delivery in multicore systems is challenging: many rails with different 

requirements 

 Per-core voltage regulation can be advantageous in these systems, but 

certain trade-offs have to be considered 

– P-state performance gains 

– Thermal limitations  

 Server and HPC systems have very specific constraints that can discourage 

switching IVR implementations 

– Typical workloads yield low benefit from per-core P-state optimization 

– Thermal impact in thermally-limited systems can be intolerable 

 LDOs can be a good alternative solution to switching IVRs 

– High efficiency when dropout is low 

– Relatively simple, low design / chip area impact, almost no overhead 

– Several approaches already demonstrated in literature and commercially 
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